Accepted Manuscript a Constrained Finite Element Method Satisfying the Discrete Maximum Principle for Anisotropic Diffusion Problems
نویسندگان
چکیده
Nonlinear constrained finite element approximations to anisotropic diffusion problems are considered. Starting with a standard (linear or bilinear) Galerkin discretization, the entries of the stiffness matrix are adjusted so as to enforce sufficient conditions of the discrete maximum principle (DMP). An algebraic splitting is employed to separate the contributions of negative and positive off-diagonal coefficients which are associated with diffusive and antidiffusive numerical fluxes, respectively. In order to prevent the formation of spurious undershoots and overshoots, a symmetric slope limiter is designed for the antidiffusive part. The corresponding upper and lower bounds are defined using an estimate of the steepest gradient in terms of the maximum and minimum solution values at surrounding nodes. The recovery of nodal gradients is performed by means of a lumped-mass L2 projection. The proposed slope limiting strategy preserves the consistency of the underlying discrete problem and the structure of the stiffness matrix (symmetry, zero row and column sums). A positivity-preserving defect correction scheme is devised for the nonlinear algebraic system to be solved. Numerical results and a grid convergence study are presented for a number of anisotropic diffusion problems in two space dimensions.
منابع مشابه
A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems
Nonlinear constrained finite element approximations to anisotropic diffusion problems are considered. Starting with a standard (linear or bilinear) Galerkin discretization, the entries of the stiffness matrix are adjusted so as to enforce sufficient conditions of the discrete maximum principle (DMP). An algebraic splitting is employed to separate the contributions of negative and positive off-d...
متن کاملMesh Adaptation and Discrete Maximum Principle for 2D Anisotropic Diffusion Problems
Finite element method is widely used to solve diffusion problems. For anisotropic problem, the numerical solution may violate the discrete maximum principle (DMP) even if the triangular mesh satisfies acute type condition. We derive the conditions for a triangular mesh such that the obtained solution satisfies DMP. We also develop the strategy to adapt a given mesh so that the solution is impro...
متن کاملNon-negative mixed finite element formulations for a tensorial diffusion equation
We consider the tensorial diffusion equation, and address the discrete maximumminimum principle of mixed finite element formulations. In particular, we address non-negative solutions (which is a special case of the maximum-minimum principle) of mixed finite element formulations. It is well-known that the classical finite element formulations (like the single-field Galerkin formulation, and Ravi...
متن کاملNumerical Solution of Convection–diffusion Equations Using Upwinding Techniques Satisfying the Discrete Maximum Principle
We discuss the application of the finite element method to the numerical solution of scalar two–dimensional steady convection–diffusion equations with the emphasis on upwinding techniques satisfying the discrete maximum principle. Numerical experiments in convection–dominated case indicate that the improved Mizukami–Hughes method is the best choice for solving the mentioned class of problems us...
متن کاملAlgebraic Flux Correction I Scalar Conservation Laws
This chapter is concerned with the design of high-resolution finite element schemes satisfying the discrete maximum principle. The presented algebraic flux correction paradigm is a generalization of the flux-corrected transport (FCT) methodology. Given the standard Galerkin discretization of a scalar transport equation, we decompose the antidiffusive part of the discrete operator into numerical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009